球墨铸铁塑性韧性好, 成本低, 广泛用于汽车、化工、风电等设备的制造; 火花放电原子发射光谱分析方便、快捷, 广泛用于冶金产品的成分, 由于球墨铸铁的非白口化状态, 其制品无法直接进行光谱分析。通过对球墨铸铁制品试样进行淬火热处理, 改变它的表面组织为半白口化状态, 结构致密,从而可以进行光谱分析, 激发后, 被激发的样品表面出现有黑晕的正常激发点, 可以读取准确的数据, 大大提高了速度和效率。本文采用钢研纳克技术有限公司生产的Labspark750型火花光谱仪对生产样品进行分析比对实验,得到火花直读光谱仪分析铸铁中各元素准确含量的方法。
自古以来,人们都有一个毛病,非要分出个子丑寅卯,非左即右。在光谱仪行业,也存在着:器推陈出新,更新换代,CCD定能取代PMT,COMS完败CCD的论调。
器作为光谱仪的核心部件,其技术的发展进步往往**着光谱仪的发展。电荷耦合元件(CCD)技术的应用是光电直读光谱仪的一个技术发展方向,采用CCD将会降低光电直读光谱仪的生产成本及减小仪器体积。其次CCD的优点是全谱,可以很方便地增加元素的种类。此外,CCD具有良好稳定性和较长的使用寿命,CCD型光电直读光谱仪可以实现激发样品时自动完成波长校准,不再需要定期进行校准,采用CCD技术可实现模块化、易于校准、抗振动。
当年PMT还是主流,仪器笨大。因为伊始购置仪器的时候对这方面不是很懂,初始只为了铝基材质,然后随着工作的深入,需要铁基的时候,厂家说加费用,要拆机装通道。“EXCUSE ME?”。
现在不比当年,运用CCD技术的仪器已然占据大部分市场。但,CCD又真的能取代PMT的地位么?
和传统的光电倍增管(PMT)技术相比,CCD发展较晚,作为新型器件,还存在一定的局限性。首先CCD没法如PMT那样每个通道都做优化。其次,CCD在应用中为了降低暗电流需要降温,这与光学系统需要恒温相矛盾。CCD目前还无法应用一些高速采样技术,因而在痕量元素分析方面性能不及PMT。CCD的信噪比不如PMT,其次如何保证多块CCD的一致性,以及处理多块CCD之间的接收空白区,也是一个问题。此外,当前CCD技术已经可以满足中端分析应用水平,但在短波元素分析、低含量元素分析、短期分析精度和长期精度方面和PMT还是有差距。
直读光谱仪可以把它分成三类,PMT(PMT即我们俗称的光电倍增管)与CCD(CCD即电荷耦合元件)和CMOS,但是目前市场中,其实CCD直读光谱仪较多,新出现的CMOS(CMOS则是互补金属氧化物半导体)技术,虽然便宜,但是技术还没有CCD技术的成熟。
PMT直读光谱仪的精度
PMT在技术上,是可达到精度的直读光谱仪,只是因为它的价格高昂,以及增加元素困难,并且市场中需要达到如此精度的工作不多,市场占有率不及CCD,普通的元素分析CCD完全够用了。那么PMT技术精度可以达到多少呢?我们常用PPM来表示精度,而PMT直读光谱仪的精度是可以达到1ppm或者0.1ppm的,什么,你没看懂?1ppm就是10的-6次方,也就是一百万分之一,或者一千万分之一的元素含量,它能够出0.0001%或者0.00001%的元素含量,这个精度是不是老高了。一半在**属分析以及个别的用合金产品时会使用到。
国内的PMT直读光谱仪不一定能够达到这个精度,与国外的技术相比还有一些差距。国内PMT技术的直读光谱仪并不多,仅是直读光谱仪的市场,价格和科研费用也高昂,所以大多数企业把目光放在CMOS直读光谱仪上。
钢研纳克光谱仪安装和调试
当光谱仪到达了安装地点,包装被拆除。如果在运输过程中发生破损需要记录和拍照,如果破损的问题影响了仪器调试,必须立刻通知仪器制造商和运输保险公司。拆除包装后,需要根据制造商提供的供货清单检查运输的产品是否齐全,包括仪器,电缆线,标样,备件等。装箱清单应该与订货清单核对。
如今,光谱仪的调试只需要一些简单的操作和电源线的链接,氩气的安装。出于这种原因,我宁愿把这个过程称之为调试而不是安装,尽管如此,安装也包含在里面了,仪器在交付前没有完全安装完毕。
打开开关几个小时后,就可以操作直读光谱仪了,如果光谱仪制造商已经校正付分析曲线了,可以调出曲线工作,直接分析。操作员的培训在光谱仪的调试过程中占了比较长的时间。